Form2WSDL Project Interim Report

 REF ReportTitle Form2WSDL Project Interim Report
Final Year Project Interim Report
Ross Shannon

 REF ReportAuthor * MERGEFORMAT Ross Shannon
[image: image2.png]

An interim report submitted in part fulfilment of the degree of BSc.

 REF Degree * MERGEFORMAT BSc. (Hons.) in Computer Science with the supervision of Dr. Nicholas Kushmerick

 REF Supervisor * MERGEFORMAT Dr. Nicholas Kushmerick and moderated by Dr. Mel Ó Cinnéide.

Prof U. known INCLUDEPICTURE "http://www.cs.ucd.ie/staff/meloc/20x20.gif" * MERGEFORMATINET

Department of Computer Science

University College Dublin

12 December 2004
Abstract

“Web Services” are a standard way of invoking procedures across the Internet. They allow programs running on any client to easily interface with and execute scripts on a server. For example, a script could be written to automatically buy a book from a bookseller’s website without anyone having to visit the site themselves. Though the possibilities are very exciting, the web services vision is being held back simply because not enough publicly-available web services have been written. This project was created to investigate the possibility of expanding the range of available services by converting ordinary human-orientated HTML forms that exist on many websites into equivalent web service descriptions, and allowing them to be invoked as normal web services.
Table of Contents

41
Introduction

62
Background Research

62.1
WSDL

72.2
Programming Language

72.3
Markup Quality

82.3.1
Form Parsing

92.3.2
Further Element Parsing

102.4
Fetching Web Pages

102.4.1
Content Types

102.4.2
Following Redirections

123
Progress Report

123.1
Program Flow

123.2
Error Reporting

133.3
Project Roadmap

144
References

1 Introduction

A web service can be thought of as a method that can be invoked over the web from inside a client application. An application sends a request to a web service, which then processes the request and sends back a response. For instance, a programmer could ask a bookseller’s web service what the current price of a particular book is by sending the service a book’s ISBN number. All the programmer needs to know are the names of the available methods and what format to send their request in. To ascertain these details, the programmer can look at the web service’s description.

Web services are described in a language called WSDL (Web Services Description Language), which is an application of XML (eXtensible Markup Language), and so is familiar in syntax. A WSDL file will have a listing of all of its methods, along with the format of data that it will accept and return [1]. The WSDL file (and embedded documentation) forms the necessary interface that allows the programmer to ascertain how to call on one of these remote methods to get data that can be manipulated by their own program.

Ideally, there would be a large catalogue of readily available services so that programmers can choose the ideal method to solve whatever problem they’re facing, instead of having to write the code themselves. However, apart from some more common operations, this is not the case. A relatively small number of companies have created APIs (Application Programmer Interfaces) to allow programmers to communicate with their web services, among them Amazon and Google. These two services allow a range of possibilities that have already been put into practice
, from text spell-checking to specialised searches. The programs that have resulted from these APIs include a browser modification that allows a user to search for and buy books from Amazon without ever needing to visit the company’s website
.

There are an enormous amount of forms on websites that are used to query their databases and otherwise retrieve and process data. These, in effect, behave in the same way as a corresponding web service would, by taking input from the form and passing it to a backend script which will interpret this data and optionally pass back some output. The problem with this situation is that it requires a user to go to the website, figure out how to use the form and fill it in themselves, rather than allowing a program to easily send the required data directly to the script.

Though there are obvious real-world benefits from offering a web service, very few companies have taken the time to create one. This in part can be attributed to the difficulty of writing a WSDL description for a web service by hand, and the dearth of tools available to convert pre-existing human-consumable interfaces into machine-readable web services. Though a few directories of available services do exist
, the number of ready-made services is still low in comparison to the number of websites with interfaces for accessing scripts and retrieving data.

Thus, the landscape at the moment is that there are a small number of web services and a very large number of web forms. Web services are currently entering a transitional period, as many developers are aware of their existence and would like to be able to use them in their own projects, but the data they require may not yet be retrievable from an existing web service. However, a developer may be able to get the required data manually by visiting a website and filling in a form.

The motivation for the Form2WSDL project is to bridge this gap in some way. If a program could be sent to fetch a page from the web, parse it for forms and then output an equivalent WSDL description of those forms for a developer to use in writing their own program, the available options to a programmer looking for useful web services to solve their particular problem will increase dramatically.
The project is implemented as a Perl script running on a publicly-accessible server. This report describes the research done in preparation for this project, and the work that has been completed so far.
Background Research

1.1 WSDL

When a page is converted by the Form2WSDL tool, a resulting WSDL file will be displayed to the user, who can then use this description to write scripts that call this service as if it had existed in the first place.
As an example of a typical WSDL file’s structure, an abridged version of Google’s WSDL file
 follows:
[image: image1.png]- <definitions name="GoogleSearch'>
- <types>
- <xsd:schema fargefNamespace="umGoogleSearch'>
- <xsd:complexType name="GoogleS carchResult>
- <xsdzalb>
<xsd:element name="cstimatedTotalResultsCount’ type="xsdint">>
<xsd:element name="scarchQuery" type="xsd:string>
<xsd:element name="startlndex" type="xsdint'/>
<xsd:element name="cndlndex" type="xsdint"> Output Parameters
<xsd:element name="scarchTips" type="xsdstring"’>
<xsd:element name="scarchTime" fype="xsd:double">
<xsdzall>
<xsd:complexType>
<xsd:schema>
<types>

- <message name="doGoogleSearch'>
<part name="key" type="xsd:string/>
<part name="q’ type="xsdsiring"’> Input Parameters
<part name="safeScarch" fype="xsdtboolean’l>
</message>
- <message name="doGoogleScarchResponse’>
<part name="return" fype="typens:GoogleSearchResult>
</message>

- <portType name="GoogleSearchPort’>
- <operation name="doGoogleSearch'>
<input message="typens.doGoogleSearch'> An Operation
<output message="typens:doGoogleScarchResponse">
<loperation>
<portType>
</definitions>

The “doGoogleSearch” operation requires three input parameters: “key”, “q”, and “safeSearch”. It will output a “GoogleSearchResult” object as its response. This object has its attributes defined at the beginning of the file in the types section.

All WSDL files are structured into four sets of definitions [2]:
	Element
	Defines

	<types>
	The data types used by the web service

	<message>
	The messages used by the web service

	<portType>
	The operations performed by the web service

	<binding>
	The communication protocols used by the web service

These elements correspond to aspects of a normal HTML form. The children elements of portType will be the forms on the page. Each message will describe the input elements in the form. These are defined using the types element, which defines what type of data each element can take, be it an integer or a string etc.
1.2 Programming Language

As the operation of this project involves a large amount of text processing, it was decided to use Perl due to its proficiency for parsing text with regular expressions. As Perl is designed to be run remotely on a server, it was also made easy to set up a web gateway to the project, so that it would be possible to run a conversion from anywhere in the world without having to download an executable.

Perl’s archive of ready-made modules at CPAN meant that a lot of the heavy lifting of extracting the relevant HTML markup could be performed by some pre-existing code, much of which has been well-tested and is very stable. Modules could also be used to set up the requests and responses necessary when fetching webpages.
1.3 Markup Quality
Markup such as HTML and more specifically XML and XHTML has a set of guidelines that well-authored, “valid” code must adhere to [3]. These rules are generally simple constructs, such as closing tags being required for all elements, or attribute values needing to be encased in double quotes.

For example, the following XHTML is invalid:

<ol start=3>

 First list item

With a few small modifications, this code can be made to conform to the XHTML specifications. The equivalent, valid code would be:

<ol start="3">

 First list item

It is estimated that over 99% of existing web pages are authored in invalid markup. Estimates made in this regard may seem exaggerated, but it is merely a side effect of the way websites have been coded since the beginning of the web. Writing markup with errors generally doesn’t do any harm. HTML is relatively easy to pick up, leading to many non-technical people being responsible for most of the content on the web. This, coupled with the fact that many popular HTML editors generate invalid markup by default, meant that most pages added to the web have been using invalid markup.

In more recent years, “web standards” have become much more important to web designers, and so clean, valid HTML or XHTML has risen in popularity. However, the vast majority of the web is made up of pages authored before this newfound awareness, and most of these pages will never have their underlying code updated. Thus, any agent that fetches web pages needs to allow a degree of freedom in what it accepts.

Most web browsers have a large amount of error-correcting code built into their rendering engines, which takes this markup and cleans it up before trying to draw anything to the screen. Though this will generally be enough to make up for shortcomings in the quality of the markup, sometimes if a page is authored in a particular way a browser will not display it as the author had intended.

This affects this project because the Form2WSDL program will need to parse the page, primarily looking for form elements. Though the Perl module used to extract the form information is somewhat liberal in what quality of code it will accept, it is not hard to imagine a poorly-authored website that the module will not be able to work with.

For instance, as expressed in the HTML 4.01 specifications, the form element, which is used as a container for all of the input elements like checkboxes and radio buttons, is prohibited from having another form element nested inside it [4].

<form method="get" action="process.cgi">

<input type="text" name="emailaddress" />

<form method="get" action="resetdata.cgi">

 <input type="reset" />

</form>

</form>

However, it must be taken into account that a page with this exact problem could be encountered ‘in the wild’. In this case there are a number of ways the code could be interpreted, from disregarding this second form, to inferring the closing tags of the previous form and treating the two forms as being separate. Ideally in this case, the latter option would be chosen.

To this end, it was decided to perform some cleaning up of the raw HTML code before it is passed to the form parser. This, to a large extent, would remove the risk of abnormalities in how the pages fed to the parser are dealt with. “HTML Tidy” is a program that has been in use for years and is proven to convert invalid HTML or XHTML markup into cleanly authored, valid XML-based markup
. Not only would this safeguard make the form parsing more likely to succeed, but the module executes quicker on clean markup rather than having to normalise the HTML before trying any data extraction.

1.3.1 Form Parsing
Since the WSDL spec requires that all input and output methods are given a type, each corresponding HTML input needs to be analysed for clues as to what range of content they should accept. The parameter type “string” will be used as a baseline, and applied to all elements unless a better, more accurate alternative can be found. [5]
For instance, checkbox elements only have two states – they are either checked or unchecked. These binary values correspond exactly to the Boolean type, which takes the values true and false.
Similarly, selection drop-downs or radio buttons can be thought of as enumerated set of values. The program could encounter a select box like so:
<select name="resultsperpage">

<option value="10">Ten</option>

<option value="20">Twenty</option>

<option value="40">Forty</option>

</select>

Some simple regular expressions would discover that all of the available options (the tokens set as each option’s value) are integers, and so might set the type for this input to positiveInteger based on this data.

Text fields often come with very little description and so great care must be taken if a guess is to be made on a suitable parameter type. All inputs will have a name attribute, and in certain cases this will be enough to make an educated guess. Inputs with pre-filled default values can also imply salient details. For instance, the program might encounter this input:

<input type="text" name="quantity" value="1" />

It would not be unreasonable to assume a numeric value is what’s required in this case, but semantics will come into play in many cases, and it will generally be better to play it safe and fall back on the “string” type rather than making an incorrect assumption.

Guessing at field types is known to be difficult [6, 7], and various methods have already been attempted, such as using Bayesian learning algorithms to create a program that makes smarter guesses as it encounters more and more forms. This may prove to be beyond the scope of this project, and so a simpler system based on clear and substantive evidence will probably be put into operation.
1.3.2 Further Element Parsing

Though most of the parameter type guessing will be based on the element type (text input, checkbox etc.) or range of enumerated values (for radio buttons and select boxes), there is also scope for inferring information from nearby elements in the document’s source code.

HTML 4.01 – and thus all varieties of XHTML – includes an element called <label>, which is used to couple the textual description of an input with the input itself by means of the element’s id value. This improves usability by allowing for a greater clickable area to gain focus of an input, and improves accessibility by making a strong connection between the input and its description, which are often decoupled by being placed in different table cells in order to create a particular visual layout. An example of one use for <label>:

 <tr>

 <td><label for="creditcard">Enter Credit Card number:</label></td>

 <td><input type="text" name="credit" id="creditcard" size="15" /></td>

 </tr>

By converting the HTML document into a tree structure, the connection between the label and input can be established, and the contents of the text node within the label element can be extracted. In this case the program would extract the string “Enter Credit Card number:” – which can easily be extrapolated to refer to an element that takes a string made exclusively of numbers. Less obvious labels or forms that do not contain any label elements will of course prove a much greater challenge.
1.4 Fetching Web Pages

In order to be a good net citizen, it’s required that the Form2WSDL user agent respects the robots.txt exclusion standard
. Robots.txt is a text file that can be placed in the root directory of a web server and read by visiting robots (also known as “spiders”), to ascertain whether they are allowed to download files from the website. For instance, the file can be written to block all search engine spiders from indexing the site, as they can consume a large amount of bandwidth and potentially index sensitive information. While it is unlikely that any site would block the Form2WSDL user agent specifically, there are a number of sites that have set up their robots file to block all visiting robots indiscriminately.

1.4.1 Content Types

The file extension of a file is merely a way of associating a file with the program on the client computer that it should be opened with, but it only hints at the way a file might be encoded. It does not guarantee the type of file that will be received. For instance, a text file that began life as file.txt could be renamed to file.gif. It could then be sent with the content type text/plain, and a browser on the receiving end would be able to correctly decode this file as a text file. Thus, accepting or rejecting files based on their file type is a risky practice.

When a file is served to any user agent over the Internet, the file’s content type is sent along with the data as part of the HTTP headers that precede the file’s data [8]. The agent can then match this against a list of file types that it supports and act accordingly [9]. A typical line in the HTTP header for a HTML file looks like this:

Content-Type: text/html; charset=iso-8859-1
When the program receives a response from the server it checks in the HTTP header for the returned file’s content type. It then tries to match this value against the range of types it has been set to accept, which is realised as an array of content-type strings that are passed over by a simple regular expression. This ensures that the program goes no further if a user tries to fetch a file with a content type that could not hold HTML forms, such as a PDF document or JPEG image. It will report the error and stop execution at that point.

1.4.2 Following Redirections
Almost all available web server software includes the ability to redirect certain requests to alternate URLs. A redirect may be required if a user types a commonly misspelled word as part of an URL, or entered the URL of a page that has been moved to another location on the server. Redirects can also be set up to allow “friendly URLs” to be displayed to the user, while transparently redirecting these abstract requests to the real, implementation-dependant URL.
The following examples are two redirections made using the Apache web server, with its mod_rewrite module [10]:
Redirect requests to an old URL to its new location on the server

RewriteRule ^oldlocation.html$ /newlocation.html [R]
Rewrite a friendly URL to a script

RewriteRule ^categories/general/$ /cat.php?catID=general

Redirects occur all the time on the web, particularly on large corporate websites, where reorganisations and a change in the underlying scripting technology are commonplace. Most redirects will occur transparently and will not be noticed by the end user.
When presenting a report of the conversion it has performed, it is important that the program notifies the user that a redirection occurred along the way if this is the case, as the page the program ended up at may not be the page the user had meant to have converted. To this end, the program will follow all standard URL redirects and add a note to the report if the URL provided by the user and the URL returned to the program in the HTTP response differ in any way.
Many websites are not properly configured to perform redirects, and their web developers add a hack in the form of a meta element in the page’s header section, like so:

<meta http-equiv="refresh" content="5; url=newurl.html">
This is a client-side redirect that operates in the browser on a timer (in the case above, the redirect will occur after 5 seconds of delay). However, when a robot visits the page, no redirect will occur. To get around this limitation, further parsing on the HTML page is performed in an attempt to find this meta element if it exists and extract the URL. If this URL is different to the originally requested URL, a new request is made for this page and the conversion continues as normal.
2 Progress Report
The program could be rapidly prototyped, another benefit of using Perl. Each aspect of the implementation is iterative, with the data being passed between methods and modified along the way. A simple web interface was built to allow a user to enter the URL of a page they want analysed for forms. This interface is available at
<http://www.yourhtmlsource.com/projects/Form2WSDL/>
2.1 Program Flow
Once the program has an URL to process, it performs some regular expression checks to make sure the URL is valid. It can also take the referring webpage by checking the HTTP referer (sic
) header, so that any page on the web can set up a link to a conversion of that particular page by calling the program with the URL “referrer”.
Once the URL has been confirmed to be valid an LWP::UserAgent object is initialised and a request to the URL is made. If this request is successful the HTML that makes up the page is extracted from the response object and saved to a temporary file on the program’s server for processing. HTML Tidy is then invoked on this file to convert the file into valid markup if required. If Tidy encounters any problems these are written as an error to the report, but the program is allowed continue on and try to parse the file for forms.

The form extraction is a relatively simple process, the result of a call to HTML::Form->parse() being saved into an array for further processing. This array is looped through and elements are broken down recursively into the constituent elements, until the form data can be listed as part of the report.
The program does not yet generate any WSDL code, but this is the next step.
2.2 Error Reporting

Because there are a wide variety of things that can go wrong during this program’s execution, externally and internally, ranging from the desired website being inaccessible, the inputted URL being invalid or the form parser not accepting the page after it has been fetched; the program needed a robust error-reporting mechanism.

Depending on the severity of the problem, the program can write an error to the output and continue on with the execution, which is the case when, for example the Tidy program cannot reformat the file’s code satisfactorily because it has too many errors. This won’t halt the rest of the script’s execution, as it is possible for the form parsing to work correctly despite the markup it is fed not being of optimum quality.

For more serious problems, like the external server not responding to the fetch request, the program will report the error and then terminate gracefully by writing the footer of the results page. This kind of critical error will also be triggered if the file the program tries to fetch is served with a content type that the program does not support, such as an image format.

2.3 Project Roadmap
	Completed:
27/10/2004
	Setup and run as a Perl script on the server. Fetch a user-defined URL using LWP::UserAgent. Save the returned HTML code to a file.

	Completed:
2/11/2004
	Perform content-type checking, and only accept common HTML encoding types.

	Completed:
4/11/2004
	Pipe this code through HTML Tidy, and save the updated file if tidying process is successful.

	Completed:
15/11/2004
	Parse the HTML for forms, and extract the details of all forms found on a page into an array. Output all relevant attribute values to the conversion report.

	Completed:
28/11/2004
	Convert the HTML page into a tree structure so that individual elements may be extracted as necessary. Search for meta refresh element.

	Due:
08/01/2005
	Output WSDL descriptions for each form. Add an input message element for each input that existed in the original form. Start with the basic form elements – text inputs and checkboxes.

	Due:
20/01/2005
	Move on to the complex elements like radio buttons and select boxes.

	Due:
15/02/2005
	Develop algorithms that will guess at appropriate parameter types for each message beyond assigning them all to “string.”

	Due:
28/02/2005
	Write a second script that will accept a SOAP (Simple Object Access Protocol) request [11] and convert this into an equivalent HTTP request so that it can be passed to the server-side script for processing just like any other user-submitted request.

	Due:
05/03/2005
	Run a separate program over two responses from the same site and discard what’s common to both pages. What is left will be the unique response to the request that was made, and corresponds to a web services output.

References

[1] Erik Christensen, et al. Web Services Description Language (WSDL) 1.1, 15 March 2001. URL: http://www.w3.org/TR/wsdl

[2] W3Schools. The WSDL Document Structure. URL: http://www.w3schools.com/wsdl/wsdl_documents.asp

[3] W3C (World Wide Web Consortium). XHTML 1.0 The Extensible HyperText Markup Language, 1 August 2002. URL: http://www.w3.org/TR/xhtml1/#diffs
[4] D. Raggett, A. Le Hors, I. Jacobs. Form elements in the HTML 4.01 specification, 24 December 1999. URL: http://www.w3.org/TR/REC-html40/interact/forms.html#h-17.3

[5] E. Cerami. Web Services Essentials: Distributed Applications with XML-RPC, SOAP, UDDI & WSDL. O’Reilly, 2002.
[6] N. Kushmerick. Learning to invoke Web Forms, 2003. URL: http://www.cs.ucd.ie/staff/nick/home/research/download/kushmerick-odbase2003.pdf
[7] A. Heβ, N. Kushmerick. Learning to Attach Semantic Metadata to Web Services, 2003. In Proc. Int. Semantic Web Conf..
[8] R. Fielding, et al. Header Field Definitions in the Hypertext Transfer Protocol (HTTP 1.1) specification, 1999. URL: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
[9] A. Flavell. The Content-type Saga. URL: http://ppewww.ph.gla.ac.uk/~flavell/www/content-type.html
[10] Ralf S. Engelschall. Apache URL Rewriting Guide, December 1997. URL: http://httpd.apache.org/docs-2.0/misc/rewriteguide.html
[11] Martin Gudgin, et al. Simple Object Access Protocol, 24 June 2003. URL: http://www.w3.org/TR/soap12-part1/

� The Google Web APIs can be found at http://www.google.com/apis/. For an example of the uses others have found for these services, consult the collection of tools built with the Google API listed at http://www.voelspriet.nl/googletools.htm.

� The Amazon Web APIs can be found at http://www.amazon.com/gp/aws/landing.html. One well known project that has made use of the API is The Mozilla Amazon Browser extension project: http://mab.mozdev.org/.

� Xmethods is a directory of publicly available web services: http://www.xmethods.net/

� The full version can be found at http://api.google.com/GoogleSearch.wsdl

� HTML Tidy was originally written by Dave Raggett, one of the earliest specification writers at the W3C (World Wide Web Consortium). It has since been taken on as a project on SourceForge. http://www.w3.org/People/Raggett/tidy/

� More information on the robots.txt exclusion standard may be found at http://www.robotstxt.org/wc/robots.html

� The misspelling of “referer” is a historical snafu that somehow made it into the original HTTP specification, and has persisted in all revisions since.

